Essential countability of treeable equivalence relations

نویسندگان

  • Dominique Lecomte
  • John D. Clemens
  • Benjamin D. Miller
  • JOHN D. CLEMENS
  • BENJAMIN D. MILLER
چکیده

We establish a dichotomy theorem characterizing the circumstances under which a treeable Borel equivalence relation E is essentially countable. Under additional topological assumptions on the treeing, we in fact show that E is essentially countable if and only if there is no continuous embedding of E1 into E. Our techniques also yield the first classical proof of the analogous result for hypersmooth equivalence relations, and allow us to show that up to continuous Kakutani embeddability, there is a minimum Borel function which is not essentially countable-to-one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treeable equivalence relations

There are continuum many ≤B-incomparable equivalence relations induced by a free, Borel action of a countable non-abelian free group – and hence, there are 20 many treeable countable Borel equivalence relations which are incomparable in the ordering of Borel reducibility

متن کامل

Sofic equivalence relations

We introduce the notion of sofic measurable equivalence relations. Using them we prove that Connes’ Embedding Conjecture as well as the Measurable Determinant Conjecture of Lück, Sauer and Wegner hold for treeable equivalence relations.

متن کامل

A Converse to Dye’s Theorem

Every non-amenable countable group induces orbit inequivalent ergodic equivalence relations on standard Borel probability spaces. Not every free, ergodic, measure preserving action of F2 on a standard Borel probability space is orbit equivalent to an action of a countable group on an inverse limit of finite spaces. There is a treeable non-hyperfinite Borel equivalence relation which is not univ...

متن کامل

Polish Groupoids and Functorial Complexity

We introduce and study the notion of functorial Borel complexity for Polish groupoids. Such a notion aims at measuring the complexity of classifying the objects of a category in a constructive and functorial way. In the particular case of principal groupoids such a notion coincide with the usual Borel complexity of equivalence relations. Our main result is that on one hand for Polish groupoids ...

متن کامل

Course 221: Michaelmas Term 2006 Section 1: Sets, Functions and Countability

1 Sets, Functions and Countability 2 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Cartesian Products of Sets . . . . . . . . . . . . . . . . . . . . 5 1.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017